
Abstract.We describe an e�cient algorithm for carrying
out a ``divide-and-conquer'' ®t of a molecule's electronic
density on massively parallel computers. Near linear
speedups are achieved with up to 48 processors on a
Cray T3E, and our results indicate that similar e�cien-
cies could be attained on an even greater number of
processors. To achieve optimum e�ciency, the algorithm
combines coarse and ®ne-grain parallelization and
adapts itself to the existing ratio of processors to
subsystems. The subsystems employed in our divide-
and-conquer approach can also be made smaller or
bigger, depending on the number of processors avail-
able. This allows us to further reduce the wallclock time
and improve the method's overall e�ciency. The strat-
egies implemented in this paper can be extended to any
other divide-and-conquer method used within an
ab initio, density functional, or semi-empirical quantum
mechanical program.

Key words: Scalable algorithms ± Supercomputing ±
Quantum mechanics ± Divide-and-conquer ± Large
molecules

1 Introduction

Several quantum mechanical methods that scale linearly
with system size have recently been introduced [1±27].
These new approaches hold great promise for calcula-
tions on truly large systems. Even though linear scaling
has been achieved, such quantum mechanical applica-
tions will still require vast amounts of computer time.
We can only hope to complete these calculations within
a reasonable amount of real, or wallclock, time if the
calculation can be run e�ectively on a large number of
computer processors. Consequently, a new algorithm's
potential usefulness is largely determined by its scalabi-

lity, i.e. its ability to run as e�ciently on a large number
of processors as it does on a small number of processors.
Amdahl's law [28] tells us, however, that it is extremely
di�cult to construct software that will scale e�ciently as
the number of processors is increased. Eventually, a
point is reached where the speedups obtained increase by
very little as the number of processors is increased, and
little is gained by throwing more of the computer's
resources towards the problem at hand. Though some
computer programs can achieve excellent results on
massively parallel computers, using sometimes hundreds
of processors, the speedup plateau will inevitably be
reached [28±32].

One class of linear scaling methods are the so-called
divide-and-conquer (DAC) techniques [11±17]. Rather
than performing the conventional quantum mechanical
procedure over the entire molecule, the molecule is ®rst
divided into a collection of subsystems, and analagous
procedures are independently carried out on each and
every one. A subsystem calculation itself exhibits the
same scaling behaviour as its global counterpart when
the size of the subsystem problem is increased. However,
the cost of a subsystem calculation quickly becomes in-
dependent of the overall system size as we need only
concern ourselves with those basis functions which are
either centred on atoms that are actually in, or posi-
tioned very near to, the subsystem in question. Once
these subsystem calculations are localized to regions
covering only a fraction of the molecule's entire extent,
the total computational e�ort required will only rise
linearly with the number of subsystems which, in turn,
rises linearly with overall system size. In this fashion,
DAC schemes achieve linear scaling. DAC procedures
for the construction of the electronic density have been
used within both density functional [11, 12] and semi-
empirical calculations [13, 14]. DAC procedures for the
®ts of electronic density [15, 16] and exchange-correla-
tion potentials [17] have also been used within a density
functional program. Though they have yet to be applied
to traditional ab initio methods, several of the DAC
techniques so far proposed are equally well suited to
Hartree-Fock (HF) and post-HF applications. LinearCorrespondence to: A. St-Amant

Regular article

A scalable divide-and-conquer algorithm combining coarse
and ®ne-grain parallelization

Sor Koon Goh1, Carlos P. Sosa2, Alain St-Amant1

1 Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
2 Silicon Graphics, Inc./Cray Research, Inc., 655E Lone Oak Drive, Eagan, MN 55121, USA

Received: 15 September 1997 /Accepted: 21 January 1998

Theor Chem Acc (1998) 99:197±206



scaling is achievable [13, 14, 16, 17], and provided that
the system under study is large enough, the DAC
approach outperforms the conventional approach when
run on a single processor [13, 14, 16, 17].

Since the subsystem calculations within a DAC
application can be carried out independently, the DAC
philosophy is inherently parallelizable. Coarse-grain
parallelization is easily introduced by assigning each
processor to a speci®c subsystem and carrying out the
subsystem calculations in unison. However, achieving a
high e�ciency on a massively parallel computer archi-
tecture is not that simple since the CPU times required
by these subsystem calculations vary considerably. Im-
proper load balancing will result if we assign equal
numbers of processors to each subsystem. The shorter
subsystem calculations will be completed long before
the larger ones, and their processors will be needlessly
idle for considerable periods of time. Even if we allow
for an unequal distribution of processors among the
subsystems, proper load balancing is still di�cult to
achieve unless we have far more processors than sub-
systems.

In this paper, we show how coarse-grain parallelism
made available to us by a DAC scheme can be e�ciently
exploited over both small and large numbers of proces-
sors. The key to our algorithm is its ¯exibility but the
precise approach used will depend on the number of
processors available and the number of subsystems to be
treated. Its success will also depend on the e�cient
®ne-grain parallelization of the individual subsystem
calculations. Provided we can e�ciently run a single
subsystem over 10±20 processors, our combined coarse/
®ne-grain approach should be scalable up to several
hundreds, if not thousands, of processors when working
with truly large systems. The ability to e�ciently exploit
massively parallel computers will make DAC ap-
proaches even more attractive on these architectures
than they already are on conventional single processor
workstations.

Although the algorithm we present can be easily ex-
tended to any DAC approach, we focus speci®cally on
the DAC ®t of a molecule's electronic density [15, 16].
The minor issues that must be addressed before the al-
gorithm is extended to other DAC calculations are also
discussed. We also show that the e�ciency of a partic-
ular parallelization scheme for a given number of pro-
cessors and subsystems can be predicted and that rough
guidelines can be established to develop software that
automatically determines which speci®c approach is best
suited for the problem and architecture at hand. The
subsystems of a molecule can be rede®ned to achieve
even lower wallclock times given a certain number of
processors. Just as no single parallelization scheme is the
best for all numbers of processors, no scheme for par-
titioning the molecule into subsystems is the best for all
numbers of processors.

2 Algorithm

We demonstrate our new algorithm using the DAC ®t of
the electronic density, q�r�, as an example. The conven-

tional, non-DAC, variational q�r� ®tting procedure was
®rst introduced by Dunlap et al. [33, 34]. In a linear
combination of Gaussian-type orbitals (LCGTO) ap-
proach, q�r� is given by

q�r� �
XN

l

XN

m

Plmvl�r�vm�r� �1�

where Plm is an element of the density matrix and vl�r�
and vm�r� are among the N basis functions in the orbital
basis [35]. To reduce the number of two-electron
integrals, q�r� is ®tted within an auxiliary basis of M
(where M is of the same order as N ) uncontracted
Gaussians, v0k�r�

� 	
,

~q�r� �
XM

k

ckv
0
k�r� : �2�

The set of expansion coe�cients, fckg, is obtained by
minimizing [33, 34]ZZ �q�r� ÿ ~q�r���q�r0� ÿ ~q�r0��

jrÿ r0j dr dr0 �3�

while constraining the ®tted density, ~q�r�, to be normal-
ized to the total number of electrons, Ne,Z

~q�r� dr � Ne : �4�

This leads to the following matrix equation

c � Sÿ1�t� kn� �5�
where

Sij �
ZZ v0i�r�v0j�r0�

jrÿ r0j dr dr0 ; �6�

ti �
ZZ

v0i�r�q�r0�
jrÿ r0j dr dr0

�
XN

l

XN

m

Plm

ZZ
v0i�r�vl�r0�vm�r0�
jrÿ r0j dr dr0 ; �7�

ni �
Z

v0i�r� dr ; �8�

and

k � Ne ÿ nSÿ1t
nSÿ1n

: �9�

By reducing the number of charge distributions from
N 2 to M , a ®tted q�r� allows us to drastically reduce the
number of two-electron integrals required to construct
the Fock or Kohn-Sham matrix elements. Unfortu-
nately, the conventional q�r� ®tting procedure is not
ideally suited for large systems as Eq. (5) requires a
matrix inversion that scales cubically with system size.
However, this problem is avoided when a DAC ap-
proach is employed [15, 16]. Following Yang and Lee
[12], the system is divided into a collection of subsys-
tems, and q�r� is divided into a sum of subsystem con-
tributions, fqa�r�g,

198



q�r� �
Xsubsystems

a

qa�r� �
Xsubsystems

a

pa
lm Plmvl�r�vm�r� �10�

where pa
lm is a partitioning function [12] that equals 1

if both vl�r� and vm�r� are centred on atoms in subsystem
a; 12 if either of the two basis functions is so centred, and
0 if neither is so centred. Rather than carrying out a
single, global, ®t of q�r�, a series of subsystem ®ts are
carried out [15, 16]. Each subsystem ®t now minimizesZZ �qa�r� ÿ ~qa�r���qa�r0� ÿ ~qa�r0��

jrÿ r0j dr dr0 �11�

subject to the constraint that ~qa�r� is normalized to the
Mulliken population of subsystem a [15]. The subsystem
®ts are carried out in exactly the same way as the global
®t. However, only auxiliary basis functions on actual
subsystem atoms and nearby ``bu�er'' atoms are used. In
other words, Eq. (5) is solved independently for each
subsystem, however, the vectors and matrices now span
only the Ma auxiliary functions positioned on atoms
within the subsystem in question or its associated bu�er
space. The global ®tted q�r� is obtained by summing up
the coe�cients from the subsystem ®ts, fca

kg [15, 16]. It
is found that errors can be kept to less than 0.01 kcal
molÿ1 when atoms within 5.0 ÊA are added to a
subsystem's bu�er space [16]. The number of auxiliary
functions employed in a subsystem ®t thus becomes
independent of overall system size once the system adds
new atoms beyond that subsystem's 5.0 ÊA cuto�. At that
point, the total CPU time associated with the DAC ®t of
q�r� rises linearly with the number of subsystems, or
equivalently, the total size of the system under study. Of
course, the ®tting procedure is only part of the entire
Coulomb problem. When constructing the Fock or
Kohn-Sham matrix elements, fast multipole methods [1,
6] must still be used to evaluate long-ranged interactions
so as to achieve linear scaling. Despite the fact that
linear scaling can be achieved with or without the use of
a ®tted q�r�, it has been shown that the remaining
number of two-electron integrals requiring explicit
evaluation can be cut by some two orders of magnitude
with a ®tted q�r� [16]. Since the explicit evaluation of
interactions with charge distributions that are not
su�ciently ``well-separated'' remains the most time-
consuming task for the Coulomb problem [6], then
clearly, the overall CPU time can be dramatically
reduced if a DAC q�r� ®tting procedure is adopted.

This DAC q�r� ®tting procedure has been imple-
mented within the LCGTO density functional theory
(DFT) program DeFT [36]. The conventional LCGTO-
DFT q�r� ®tting procedure [33, 34] is also implemented
in such programs as DGauss [37] and deMon [38]. For
the purposes of this paper, the key aspect of the DAC
q�r� ®tting procedure is that the subsystem ®ts can be
carried out independently. It is also important to note
that the CPU times associated with the subsystem ®ts
span a considerable range of values [16]. The results in
the next section show that an order of magnitude can
easily separate the longest subsystem ®t from the
shortest. Finally, the e�ciency of the DAC approach is
little a�ected by the size of the subsystems [16], provided

that the subsystems are not so large that they encompass
a too larger fraction of the overall system. This means
that we have considerable ¯exibility in the number of
subsystems with which we can work. The importance of
this point will be made clear further on.

We are currently in the midst of creating a parallel
distributed memory version of DeFT. This is being done
with the message-passing interface (MPI) library [39].
When running on a single processor, each subsystem ®t
is carried out one after the other. When running on a
collection of processors, this same strategy can be em-
ployed. We call this stategy the ®ne-grain approach, as
only the parallelism within a given subsystem calculation
is being exploited. The most computationally intensive
portion of the density ®tting procedure is the evaluation
of the three-centred two-electron integrals of Eq. (7). In
this part of the code, ®ne-grain parallelism is established
by partitioning the list of non-vanishing primitive pairs
arising from the orbital basis sets over the processors.
This is done separately for each combination of angular
momenta in the orbital basis (in our tests, this would
mean ss, ps, pp, ds, dp and dd) so that the varying CPU
requirements of each [40] do not hinder proper load
balancing. Limiting ourselves to ®ne-grain paralleliza-
tion only is the ``straightforward'' approach, as no at-
tempt is made to exploit the coarse-grain parallelism
a�orded by our DAC scheme. This straightforward ap-
proach can work well if the number of processors is not
too large. Otherwise, Amdahl's law [28],

Ttotal � Tserial � Tparallel
No: of processors

; �12�

indicates that the sections of code which cannot be
carried out in parallel (requiring time Tserial) will begin to
dominate the overall time, Ttotal, when the sections of
code that can be parallelized (requiring time Tparallel on a
single processor) are being performed on a su�ciently
large number of processors. No matter how large the
ratio

Tparallel
Tserial

may appear, it is very di�cult to achieve high
e�ciency on a very large number of processors. For
example, even if 99.5% of a job is parallelized, a speedup
of only 38.9 is seen if it is run on 48 processors. The
speedup increases to only 65.1 if we double the number
of processors to 96. Clearly, the ®ne-grain approach
is not the method of choice when trying to exploit
machines with hundreds, or someday thousands, of
processors.

To exploit the coarse-grain parallelism inherently
provided by the DAC philosophy, we use a combined
coarse/®ne-grain approach. Rather than carrying out the
subsystem calculations one after another, we carry them
out in unison, assigning each subsystem calculation to a
group of processors. Since the computational burden
associated with a subsystem calculation can be many
times larger, or smaller, than its counterparts, assigning
similar numbers of processors to each subsystem calcu-
lation would be extremely ine�cient. Rather, we assign
to a subsystem calculation a fraction of the total number
of processors as similar as possible to the fraction of the
overall time required by that subsystem calculation.
Since there is such a discrepancy in the individual sub-

199



system times, e�cient load balancing is di�cult to
achieve unless a reasonably large number of processors
is available. For example, if one subsystem calculation is
10 times longer than another, at least 11 processors
among these two subsystems are needed to achieve op-
timal load balancing. If faced with a smaller number of
processors than 11, processors would necessarily have to
be removed from the larger subsystem calculation since
the smaller subsystem must always have at least a single
processor at its disposal. Optimal load balancing can no
longer be achieved.

If the ratio of processors to subsystems becomes too
small, better load balancing can be achieved by per-
forming multiple passes within the combined coarse/
®ne-grain approach. Rather than performing all the
subsystem calculations in unison during a single pass,
calculations are concurrently performed on only a frac-
tion of the total number of subsystems. The remaining
subsystem calculations are handled in subsequent passes.
In so doing, the ratio of processors to subsystems is
greatly increased within any one pass. This provides the
¯exibility required to achieve optimal load balancing
within these passes. In our simple algorithm, the sub-
systems are reordered, in descending order, based on the
time expected to complete them on a single processor.
The ®rst n1 subsystems are then performed in unison
within the ®rst pass, the next n2 within the second, and
so on. By placing them in such an order, we ensure that
subsystem calculations carried out within any one pass
are as similar in cost as possible. Proper load balancing
within a pass is, in general, more easily achieved if the
ratio of times between the longest and shortest subsys-
tem calculations is kept as small as possible. In our
simple algorithm, the numbers of subsystems treated
within the passes are chosen so that the times spent in
the passes are as similar as possible. This is not an es-
sential aspect of our algorithm, and this decision is made
only to simplify the coding of an automated procedure.
In testing the e�ciency of our combined coarse/®ne-
grain approach, we only consider using either a single
pass or two passes. However, situations in which it may
become advantageous to go to three or more passes are
discussed towards the end of this report. Note that the
straightforward scheme using only ®ne-grain parallel-
ization is equivalent to the combined coarse/®ne-grain
scheme where the number of passes is equal to the
number of subsystems.

In this approach, it is essential to know in advance
the approximate cost of each subsystem calculation.
Otherwise, optimal load balancing cannot be achieved
through the coarse-grain distribution of the subsystem
calculations over appropriately sized clusters of proces-
sors. Fortunately, these DAC methods are being used
within an iterative self-consistent ®eld (SCF) procedure.
Information from the previous iteration can be used to
establish how much time will be required for each sub-
system in the current iteration. Subsystem times will be
little a�ected from iteration to iteration. For the ®rst
iteration, it should be fairly simple to establish a rea-
sonably accurate estimate of the times required by each
subsystem calculation. In our example, the DAC ®t of
q�r�, a reasonably accurate estimate of the time required

by a subsystem calculation can be made given the
number of auxiliary ®tting functions being used and the
number of charge distributions (that arise when there is
appreciable overlap between a pair of primitive
Gaussians in the orbital basis) being ®tted. And since
only the ratios of the subsystem times are ultimately
important to the success of the combined coarse/®ne
grain scheme, the formulae used to make these estimates
need not be changed upon going from one computer
platform to another. In this work, we simply use sub-
system times obtained from a previous run on a single
processor. Also, when assigning processors to subsys-
tems, we could further re®ne our algorithm by using
Amdahl's law to take into account the fact that each
subsystem calculation is not 100% parallelized. This
begins to alter the actual numbers of processors assigned
to subsystems only when the ratio of processors to
subsystems is exceedingly large. However, the goal of
our ¯exible algorithm is to avoid such a situation,
whenever possible. Therefore, when assigning processors
to subsystems, we assume 100% e�ciency over the
cluster of processors assigned to each subsystem.

A combined coarse/®ne grain approach to carry out a
DAC procedure is easily implemented within an existing
code. It has already been established that DAC schemes
can be easily introduced into existing computer codes
[12, 15]. Once an MPI version of the DAC computer
code is created, our coarse/®ne-grain approach is im-
plemented by simply replacing a loop over the subsys-
tems by a loop over the number of passes. Within each
cycle of this loop over the passes, the appropriate
number of processors is assigned to each subsystem
calculation that is to be performed within that pass.
These processors are ®rst enrolled within an MPI group
[39], and the group is then assigned an MPI communi-
cator [39]. After this has been done, the same MPI code
used for the straightforward ®ne-grain approach can be
used virtually unchanged. All that need be done is to
replace the communicator associated with the entire
collection of processors, MPI_COMM_WORLD [39],
by the communicator associated with the subset of
processors assigned to the subsystem calculation. At the
end of a loop cycle, the MPI groups and communicators
created for this pass are destroyed. New ones are cre-
ated, as appropriate, for the next pass.

Finally, our code has been modi®ed to exploit the
vast amount of memory available when running on
many processors. The original code for the DAC ®t of
q�r� stored much of the information necessary for a
subsystem calculation (most importantly, the inverse of
the auxiliary basis overlap matrix) on disk. On a single
processor with 64 or 128MB of memory, it would be
impossible to store all this information in memory for
anything other than a relatively small molecule. How-
ever, when running on a number of processors greater
than or equal to the number of subsystems, we now store
all this information in memory, rather than disk. A
subsystem's requirements are independent of the overall
system size, and therefore, this approach is entirely
scalable. This modi®cation in the code will be responsi-
ble for the superlinear speedups often observed in the
following section. Similar modi®cations have been made

200



in other scienti®c codes and are responsible for the
superlinear speedups which are often seen when they
are ported to massively parallel platforms [39].

3 Results and discussion

Benchmark DAC ®ts of q�r� are performed on the PM3
[41] optimized extended conformations of the glycine
pentapeptide (34 atoms), heptapeptide (48 atoms) and
nonapeptide (62 atoms). In partitioning scheme A, these
systems are divided into -NHCH2CO- subsystems, a
terminal HCO- subsystem, and a terminal -NH2 subsys-
tem. In partitioning scheme B, each one of the
-NHCH2CO- groups is further subdivided into NH,
CH2 and CO fragments. Regardless of the partitioning
scheme, a 5:0 ÊA cuto� is used for the DAC ®t of q�r�. A
�7111=411=1�� orbital basis is used for heavy atoms,
while a �41=1�� basis is used for hydrogen atoms [42]. To
®t q�r�, an auxiliary basis of seven s functions, three sets
of p functions, and three sets of d functions is assigned
to each heavy atom [42]. The three p and d sets of
functions, along with three of the s functions, are
constrained to having the same exponents so as to make
integral evaluation more e�cient [42]. For hydrogen
atoms, such a constraint is also in place, but the
auxiliary basis is now reduced to four s functions, a
single set of p functions, and a single set of d functions
[42].

Table 1 lists the wallclock times required by these
subsystem ®ts when run on a single Cray T3E processor.
Results for partitioning scheme B are only included for
the heptapeptide. These subsystem times include both

the CPU time and the disk I/O time required to read the
inverse of the overlap matrix for that subsystem's aux-
iliary basis. Within partitioning scheme A, the sums of
the subsystem I/O times are roughly 2:0 s, 4:3 s and 5:6 s
for the pentapeptide, heptapeptide and nonapeptide,
respectively. The I/O time increases with system size in
an approximately linear fashion, re¯ecting the fact that
the maximum number of auxiliary basis functions within
any one subsystem ®t has been attained and I/O costs
are now rising only with the addition of more subsys-
tems. Within partitioning scheme A, the amount of time
associated with any one subsystem calculation has al-
most attained a maximum value. The longest subsystem
time seen for the heptapeptide is far more similar to that
seen in the nonapeptide than it is to that seen in the
pentapeptide. Though many of the central -NHCH2CO-
subsystems have exactly the same number of auxiliary
basis functions assigned to their ®ts, those at the very
centre of the polypeptide chain have slightly longer
wallclock times since a greater number of primitive pairs
having appreciable overlap arise from the orbital bases
[15]. In a more general globular peptide, the maximum
time seen for any one subsystem calculation would be
considerably higher. However, the key point, that this
time would quickly attain a maximum value and the
overall computer time would rise linearly with system
size, remains unchanged. Within partitioning scheme B,
the subsystem times are naturally much smaller. The
sum of the times for the three fragments of each
-NHCH2CO- group is roughly equal to the time seen
for the corresponding -NHCH2CO- subsystem within
partitioning scheme A. Overall, partitioning scheme B
would seem to be slightly more e�cient. However, it is

Table 1. Wallclock time (in seconds, single Cray T3E processor) required by each subsystem in a divide-and-conquer ®t of q�r� or a series of
extended glycine polypeptides

Subsystem # Pentapeptidea Heptapeptidea Heptapeptideb Nonapeptidea

1 3.0 3.1 3.1 3.2
2 13.4 13.5 2.5 13.6
3 21.1 21.9 4.8 22.1
4 20.8 23.5 6.9 23.7
5 12.4 23.3 4.9 24.1
6 2.0 21.5 7.2 23.7
7 ± 12.2 8.6 23.3
8 ± 2.0 5.2 21.3
9 ± ± 7.7 12.3
10 ± ± 9.9 2.0
11 ± ± 5.4 ±
12 ± ± 7.7 ±
13 ± ± 8.8 ±
14 ± ± 5.1 ±
15 ± ± 6.6 ±
16 ± ± 7.8 ±
17 ± ± 4.4 ±
18 ± ± 5.0 ±
19 ± ± 3.7 ±
20 ± ± 2.0 ±

Total 72.7 121.0 117.3 169.3
Conventionalc 73.2 163.8 163.8 281.4

aUsing partitioning scheme A
bUsing partitioning scheme B
c Time required for a conventional LCGTO-DFT ®t of q�r�

201



clear that the e�ciency of the DAC ®t of q�r� on a single
processor is fairly insensitive to our choice of subsystems
(provided the subsystems do not become so large as to
cover a signi®cant fraction of the total system, in which
case, the cubic scaling of the conventional non-DAC
approach would be recovered). This insensitivity to the
chosen partitioning scheme, A or B, has been previously
observed over a range of sizes for these polypeptides
[16]. It is important to note that the individual CPU
times for the subsystem ®ts within any polypeptide can
span a full order of magnitude. This presents a chal-
lenging load balancing problem. Finally, within parti-
tioning scheme A, the overall wallclock times associated
with the DAC ®ts display essentially perfect linear
scaling as an extra 48.3 s of total CPU time are required
each time another two -NHCH2CO- subsystems are
added. Similar results (not shown) are also seen using
scheme B. The conventional non-DAC ®ts of q�r� re-
quire 73.2 s, 163.8 s and 281.4 s, respectively. These
times scale slightly worse than quadratically. However,
all these times neglect the time spent inverting the
overlap matrices of the auxiliary bases before the start of
the SCF procedure. The conventional non-DAC calcu-
lation will see the cost of this step rise cubically with
system size. For the DAC calculation, it will only rise
linearly because the number of auxiliary basis functions
in a subsystem calculation has already reached a maxi-
mum value.

Figures 1±4 display the speedups obtained on a Cray
T3E computer for the four systems listed in Table 1.
Note that data for the combined coarse/®ne-grain ap-
proach with a single pass does not begin until the
number of processors is greater than or equal to the
number of subsystems. This is a necessary condition
when only a single pass is performed. In general, we need
a number of processors which is at least equal to the

maximum number of subsystems treated within a pass.
Therefore the speedups for the combined coarse/®ne-
grain approach with two passes begins when the number
of processors is at least one half the total number
of subsystems. Also, a signi®cant improvement in the
e�ciency of the straightforward ®ne-grain scheme is
observed each time the number of processors is equal to
or greater than the number of subsystems. These
superlinear speedups arise from the program's switch
to using memory, rather than disk, to store all the
necessary information for the subsystem ®ts.

Figure 1 shows the speedups provided by various
approaches when applied to the smallest system, the
pentapeptide, using partitioning scheme A. If we look at
the speedups obtained through ®ne-grain parallelization
only, we see that a reasonable level of e�ciency is
maintained up to 24 processors. This number of pro-
cessors provides a speedup of 23.3, for an e�ciency of
97.8% . Beyond this number of processors, the e�ciency
of the ®ne-grain approach drops dramatically. A
speedup of only 33.8, for an e�ciency of only 70.4%, is
obtained when running the code on 48 processors.

The single pass coarse/®ne-grain approach on the
pentapeptide starts o� with a very poor speedup over
eight processors. This, however, is to be expected. With
six subsystems and only eight processors, the best that
we can do to reduce the wallclock time is assign an extra
processor to each of the two most time-consuming
subsystem ®ts. Even if these two subsystem calculation
times are halved, they will still take just over 10 s each, as
opposed to only 2 s for the shortest subsystem calcula-
tion. Optimal load balancing is far from being achieved.
As more processors are added, the e�ciency of the single
pass coarse/®ne-grain approach improves dramatically.
Starting with an e�ciency of only 68.8% on 8 proces-
sors, the e�ciency rapidly rises to roughly 90% for 16,

Fig. 1. Speedup on a Cray T3E for the
divide-and-conquer (DAC) ®t of q�r� for
the glycine pentapeptide using partition-
ing scheme A

202



24 and 32 processors. The exact e�ciencies depend on
what limited load balancing we can achieve through
coarse-grain parallelism with the number of processors
at our disposal. In our algorithm, a larger number of
processors does not necessarily mean that a higher e�-
ciency will be achieved. As a simple illustration of this
fact, if we have two subsystem ®ts of equal complexity,
100% e�ciency can be theoretically achieved on 16
processors, but not on 17, as our method only allows an
integer number of processors to be assigned to a sub-
system. However, in general, more processors allow for a
better coarse-grain distribution of subsystems over

groups of processors and a higher e�ciency is most often
observed. When going to 40 and 48 processors, there are
now enough processors available to achieve near optimal
load balancing. Speedups of 40.0 and 47.8 are observed.
Had we been able to store all the information for all the
subsystem ®ts in memory for the single processor run
and eliminate all disk I/O time (this is, however, quite
impossible with the limited memory available on a single
node), our speedups would only drop to 38.8 and 46.5.
These are still excellent results. When running over 48
processors, no subsystem calculation runs over more
than 14 processors. In descending order, 14, 13, 9, 8, 2

Fig. 2. Speedup on a Cray T3E for the
DAC ®t of q�r� for the glycine hepta-
peptide using partitioning scheme A

Fig. 3. Speedup on a Cray T3E for the
DAC ®t of q�r� for the glycine nonapep-
tide using partitioning scheme A

203



and 2 processors are assigned to the subsystems once we
have ordered them based on their wallclock times on a
single processor. Amdahl's law should therefore not
have a great impact on any one subsystem calculation,
particularly since the smaller subsystems, which are most
susceptible to poor scalability, have the least number of
processors assigned to them.

When we begin to perform two passes within the
combined coarse/®ne-grain approach, our processor to
subsystem ratio within an individual pass is higher, and
proper load balancing is far easier to achieve when
working with a limited number of processors. Speedups
of 2.9, 7.9, 17.2, 25.0, 32.8, 40.2 and 47.8 are obtained
over 4 to 48 processors. Superlinear speedups arise from
the elimination of disk I/O. Excellent speedups are still
observed out to 48 processors. However, at this point,
the ®rst pass is performing the largest two subsystem
calculations in tandem, each one run over 24 processors.
We are very near the point where Amdahl's law will
begin to cause a noticeable reduction in the e�ciency of
a single subsystem ®t. The second pass is also a problem
since 21, 19, 5 and 3 processors are being assigned to the
four least time-consuming subsystems. Granted, we are
not assigning as many processors to an individual sub-
system. However, we are assigning nearly as many to a
much smaller subsystem calculation, and Amdahl's law
may play an even more important role given the sub-
system's smaller size. Beyond 48 processors, we would
therefore expect our e�ciency to drop at a rate similar to
that seen when going beyond 24 processors in the
straightforward ®ne-grain approach. With 48 proces-
sors, the e�ciencies of the combined coarse/®ne-grain
approach with either one pass or two are identical for
the pentapeptide. Beyond 48, the single pass approach
should become the more e�cient of the two. Using a
single pass, no individual subsystem calculation will be

assigned more than 24 processors until we reach nearly
90 processors. It is reasonable to expect that we will
maintain an e�ciency very much similar to that seen
with the two pass approach over 48 processors were we
to attempt a single pass over 90 processors.

Figures 2 and 3 show the speedups obtained for the
heptapeptide and the nonapeptide using partitioning
scheme A. Exploiting ®ne-grain parallelism only, overall
e�ciency is little a�ected upon going to these larger
systems. This is to be expected. The computational
burden of the individual subsystem calculations them-
selves are little a�ected by the overall system size and the
ratio

Tparallel
Tserial

remains virtually unchanged. For the com-
bined coarse/®ne-grain approach with a single pass, the
speedups are not as good as those seen for the penta-
peptide on 48 or less processors. The processor to sub-
system ratios are smaller and optimal load balancing
becomes considerably harder to achieve. On 48 proces-
sors, the heptapeptide has a speedup of 46.3, as opposed
to 47.8 for the pentapeptide. The speedup for the
nonapeptide falls even further, to 45.6. However, for this
last system, it will be easier to achieve proper load bal-
ancing once more processors are added, and we would
expect to get near ideal speedups with up to 170 pro-
cessors. It would only be at this point that the larger
individual subsystem calculations would start having
more than 24 processors assigned to them and that
Amdahl's law would thus begin to take its toll on their
e�ciencies. If two passes are used, drops in e�ciency are
not really observed upon going to larger systems. On 48
processors, speedups of 48.3 and 47.5 are seen, respec-
tively, for the heptapeptide and nonapeptide. Within any
pass, the processor to subsystem ratio is su�ciently large
enough to achieve adequate load balancing. In fact,
better results are obtained for the heptapeptide than the
pentapeptide, despite the smaller processor to subsystem

Fig. 4. Speedup on a Cray T3E for the
DAC ®t of q�r� for the glycine hepta-
peptide using partitioning scheme B

204



ratios. This may result from the fact that less processors
are assigned to each subsystem calculation. For the
pentapeptide, the ®rst pass assigns 24 processors to each
of the two largest subsystems. For the heptapeptide, the
®rst pass assigns 17 processors to the largest subsystem,
16 to the second largest, and 15 to the third largest. In
the second pass, the largest number of processors as-
signed to any one subsystem is 21 for the pentapeptide
and 19 for the heptapeptide. The e�ects of Amdahl's law
within the individual subsystem calculations are there-
fore less dramatic when working with the heptapeptide.
The e�ects of Amdahl's law are even less dramatic
within the nonapeptide calculation. Nevertheless, the
nonapeptide has a somewhat smaller speedup, and it is
no doubt due to its smaller processor to subsystem ratio
and its subsequent failure to achieve a better load
balance when assigning processors to subsystems.

Figure 4 shows the speedups obtained for the hepta-
peptide using partitioning scheme B. Though Table 1
indicates that the use of smaller subsystems makes
scheme B marginally more e�cient than scheme A when
running on a single processor, it is evident that scheme
B is not preferred when running on a large cluster of
processors. When using ®ne-grain parallelization only, a
speedup of only 21.4 is obtained over 48 processors. The
increase in speedup between 40 and 48 processors is so
marginal that it is doubtful that a speedup greater than
22 would happen no matter how many processors were
made available. This is considerably worse than the
speedups seen for the heptapeptide using partitioning
scheme A. But this is to be expected since the subsystem
calculations within scheme B are all much smaller than
within scheme A. The ®ne-grain approach has consid-
erable di�culty achieving high e�ciency since each
subsystem problem requires very little CPU time, and
the overhead involved with the serial code at the be-
ginning of each calculation begins to play a more im-
portant role. This will not change no matter how large
the overall system becomes. When using the combined
coarse/®ne-grain approaches, the results are not nearly
as bad. They are, however, still not nearly as good as
those seen with scheme A. The reason for the decrease is
due to the fact that the processor to subsystem ratio is
considerably lower within scheme B than it is within
scheme A. When performing a single pass, a consider-
able improvement in e�ciency, 79.3% to 89.9%, is seen
upon going from 40 to 48 processors. This indicates that
overall e�ciency is still highly sensitive to the processor
to subsystem ratio and many more processors are still
required before calculations using partitioning scheme
B achieve their greatest e�ciency. Unfortunately, the
available resources do not allow us to test out this hy-
pothesis. However, employing partitioning scheme
B, and assuming that Amdahl's law will only begin to
hamper the e�ciency of a single subsystem calculation
when 12 processors are assigned to it, near linear
speedups should be observed out to nearly 140 proces-
sors with the combined coarse/®ne-grain approach using
a single pass. Within scheme A, near linear speedups are
only projected out to roughly 125 processors, assuming
Amdahl's law becomes a problem when 24 subsystems
are assigned to any one of its larger subsystem calcula-

tions. And after taking into account the fact that scheme
B provided a slightly lower overall time when run on a
single processor, scheme B should become the method of
choice when such a number of processors does become
available.

4 Conclusion

These preliminary benchmark calculations (the actual
results on up to 48 processors and our extrapolations
beyond this number) have established that a DAC
philosophy within a quantum mechanical program can
be exploited to achieve high e�ciencies on a very large
number of processors. However, the precise method of
choice depends entirely on the number of processors
currently available. With a small number of processors,
the combined coarse/®ne-grain schemes are not as
e�cient as the straightforward ®ne-grain approach.
However, when more processors are added, the com-
bined coarse/®ne-grain schemes become far more
e�cient. Meanwhile, the poor scalability of the straight-
forward ®ne-grain scheme becomes apparent. Multiple
passes are preferred when the processor to subsystem
ratio is still relatively small. Better load balancing is thus
achieved within the individual passes. However, when
proceeding to larger numbers of processors, it is best to
reduce the number of passes so that as few processors as
possible need be assigned to any one subsystem calcu-
lation. The benchmarks of our various parallelization
schemes provide us with insights into how many
processors are required before one particular approach
becomes more e�cient than another. These results may
be used to design a section of computer code that will
automatically determine which approach is preferred
under the conditions in which the program is currently
being run. This will allow us to achieve near linear
speedups on any number of processors without resorting
to user intervention. We are in the process of doing this
within DeFT. Also, the relative insensitivity of the total
CPU time to the particular partitioning scheme being
used provides us with an extra degree of ¯exibility if the
ratio of processors to subsystems is either too small or
too large.

Our preliminary results were obtained for relatively
small systems, which are a more severe test of a code's
scalability over a large number of processors than
large systems. Calculations on much larger molecules,
with many more subsystems, are planned (memory
constraints, in some of DeFT's modules unrelated to the
DAC procedures, must ®rst be addressed). For this same
reason, linear systems were studied so as to establish
linear scaling with as small systems as possible. The same
would have been achieved for 3D systems, though much
larger systems would have had to be studied before
linear scaling became evident. With the number of
processors available in this study (48), adequate load
balancing for much larger systems can be achieved by
performing multiple passes. This is a straightforward
extension of the combined coarse/®ne- grain approach
with two passes that has been extensively studied in this
report. However, when more processors become avail-

205



able, we should be able to achieve near linear speedups
on up to several hundreds, if not thousands, of proces-
sors. We can easily make a reliable estimate of the
number of processors that can be used in an e�cient
manner. We need only ®nd the point at which any one
subsystem in the combined coarse/®ne-grain approach
with a single pass will be assigned more than N proces-
sors, where N is the number of processors where we
feel that the e�ciency of the straightforward ®ne-grain
approach will begin to su�er appreciably under
Amdahl's law. The scalability of the combined coarse/
®ne-grain approach will thus be greatly extended each
time we increase N 's value, as more processors can now
be e�ciently exploited in each and every subsystem
calculation. Slight improvements in the ®ne-grain par-
allelization can thus bring about huge improvements
within our new scheme.

We have chosen to concentrate this paper on the
DAC ®t of the electronic density. However, the com-
bined coarse/®ne-grain approach can be extended, just
as well, to the DAC ®t of the exchange-correlation po-
tential [17] and the DAC construction of the electronic
density [11, 12, 43]. The DAC philosophy should also be
amenable to evaluate energy gradients as well [12]. This
work is now under way. It is also important to note that
the DAC partitioning scheme used for the ®t of the
electronic density need not necessarily be the same as
those chosen for other DAC procedures. A more bene-
®cial partitioning scheme may be adopted for these.
Ultimately, the e�ciency of any combined coarse/®ne-
grain approach will depend entirely on how e�ciently
the individual subsystem calculations can be carried out
using ®ne-grain parallelization only. The less e�ciently
this can be done, the more important it becomes to
exploit a DAC method's inherent ability to establish
coarse-grain parallelism. This, combined with the fact
that a DAC algorithm can provide linear scaling in total
CPU time with respect to overall system size, means that
our DAC combined coarse/®ne-grain approach is ideally
suited for applications on truly large molecular systems
using today's massively parallel supercomputers.

Acknowledgements. We would like to thank Cray Research for
donating time on their Cray T3E system. We wish to thank the
Natural Sciences and Engineering Research Council of Canada and
the University of Ottawa for ®nancial support. A research grant
from the Merck Frosst Centre for Therapeutic Research is also
gratefully acknowledged.

References

1. Strain MC, Scuseria GE, Frisch MJ (1996) Science 271: 51
2. Stratmann RE, Scuseria GE, Frisch MJ (1996) Chem Phys Lett
257: 213

3. Burant JC, Scuseria GE, Frisch MJ (1996) J Chem Phys 105:
8969

4. Xu CH, Scuseria GE (1996) Chem Phys Lett 262: 219

5. Millam JM, Scuseria GE (1997) J Chem Phys 106: 5569
6. White CA, Johnson BG, Gill PMW, Head-Gordon M (1994)
Chem Phys Lett 230: 8

7. White CA, Johnson BG, Gill PMW, Head-Gordon M (1996)
Chem Phys Lett 253: 268

8. Schwegler E, Challacombe M (1996) J Chem Phys 105: 2726
9. Challacombe M, Schwegler E (1997) J Chem Phys 106: 5526
10. Kutteh R, Apra E, Nichols J (1995) Chem Phys Lett 238: 173
11. Yang WT (1992) J Mol Struct (Theochem) 87: 461
12. Yang WT, Lee TS (1995) J Chem Phys 103: 5674
13. Lee TS, York DM, Yang WT (1996) J Chem Phys 105: 2744
14. Dixon SL, Merz KM (1996) J Chem Phys 104: 6643
15. Gallant RT, St-Amant A (1996) Chem Phys Lett 256: 569
16. Goh SK, St-Amant A (1997) Chem Phys Lett 264: 9
17. Goh SK, Gallant RT, St-Amant A, Int J Quantum Chem

(accepted)
18. Stewart JJP (1996) Int J Quantum Chem 58: 133
19. Galli G, Parrinello M (1992) Phys Rev Lett 69: 3547
20. Mauri F, Galli G, Car R (1993) Phys Rev B 47: 9973
21. Li XP, Nunes RW, Vanderbilt D (1993) Phys Rev B 47: 10891
22. Daw MS (1993) Phys Rev B 47: 10895
23. Stechel EB, Williams AR, Feibelman PJ (1994) Phys Rev B 49:

10088
24. Hernandez E, Gillan MJ (1994) Phys Rev B 51: 10157
25. Chen X, Langlois JM, Goddard WA III (1995) Phys Rev B 52:

2348
26. Ordejon P, Drabold DA, Martin RM, Grumbach MP (1995)

Phys Rev B 51: 1456
27. Kohn W (1996) Phys Rev Lett 76: 3168
28. Kendall RA, Harrison RJ, Little®eld RJ, Guest MF (1995)

In: Lipkowitz KB, Boyd DB (eds) Reviews in computational
chemistry, vol 6. VCH, New York, pp 209±316

29. Bernholdt DE, Apra E, Fruchtl HA, Guest MF, Harrison RJ,
Kendall RA, Kutteh RA, Long X, Nicholas JB, Nichols JA,
Taylor HL, Wong AT, Fann GI, Little®eld RJ, Nieplocha J
(1995) Int J Quantum Chem Symp 29: 475

30. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon
MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S,
Windus TL, Dupuis M, Montgomergy JA Jr (1993) J Comput
Chem 14: 1347

31. Feyereisen M, Kendall RA (1993) Theor Chim Acta 84: 289
32. Colvin ME, Janssen CL, Whiteside RA, Tong CH (1993) Theor

Chim Acta 84: 301
33. Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:

3396
34. Dunlap BI (1996) Int J Quantum Chem 58: 123
35. Hehre WJ, Radom L, Schleyer P, von R, Pople JA (1986)

Ab initio molecular orbital theory. Wiley, New York
36. The complete source code and documentation for an earlier

version of the DeFT program package may be downloaded
from http://www.chem.uottawa.ca/DeFT.html

37. Andzelm J, Wimmer E (1992) J Chem Phys 96: 1280
38. Salahub D, Fournier R, Mlynarski P, Papai I, St-Amant A,

Ushio J (1991) In: Labanowski JK, Andzelm JW (eds) Density
functional methods in chemistry. Springer, Berlin Heidelberg
New York, pp 77±100

39. Gropp W, Lusk E, Skjellum A (1995) Using MPI: portable
parallel programming with the message-passing interface. MIT
Press, Cambridge

40. Obara S, Saika A (1986) J Chem Phys 84: 3963
41. (a) Stewart JJP (1989) J Comput Chem 10: 209; (b) Stewart JJP

(1989) J Comput Chem 10: 221
42. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J

Chem 70: 560
43. Goh SK, St-Amant A (1997) Chem Phys Lett 274: 429

206


